Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Cytosinium-hydrogen maleate-cytosine (1/1/1)

Nourredine Benali-Cherif,^a* Wahiba Falek^b and Amani Direm^a

^aLaboratoire des Structures, Propriétés et Interactions Inter-Atomiques, Centre Universitaire Abbes Laghrour, Khenchela 40000, Algeria, and ^bDépartement de Chimie, Université Elhadj Lakhdar, Batna 05000, Algeria Correspondence e-mail: benalicherif@hotmail.com

Received 1 November 2009; accepted 4 November 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.136; data-to-parameter ratio = 17.3.

The title organic salt, $C_4H_6N_3O^+ \cdot C_4H_3O_4^- \cdot C_4H_5N_3O_5$, was synthesized from cytosine base and maleic acid. An intramolecular $O-H \cdots O$ hydrogen bond occurs in the hydrogen maleate anion. The crystal packing is stabilized by intermolecular N-H···O, N-H···N and C-H···O hydrogen bonds, giving rise to a nearly planar two-dimensional network parallel to (101).

Related literature

For background to cytosine, see: Devlin (1986); Johnson & Coghill (1925); Mahan et al. (2004). For the structure of cytosine, see: Barker & Marsh (1964) and for that of cytosine monohydrate, see: Jeffrey & Kinoshita (1963); Swamy et al. (2001). For the stuctures of inorganic cytosinium salts, see: Mandel (1977); Cherouana et al. (2003); Jaskólski (1989); Bagieu-Beucher (1990) and for those of cytosinium salts of organic acids, see: Gdaniec et al. (1989); Smith et al. (2005); Balasubramanian et al. (1996). For the hydrogen maleate anion, see: Madsen & Larsen (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data $C_4H_6N_3O^+ \cdot C_4H_3O_4^- \cdot C_4H_5N_3O$ $M_{\rm m} = 338.29$ Monoclinic, C2/c a = 27.3226 (5) Å b = 7.3618 (2) Å c = 14.6742 (4) Å $\beta = 93.905 \ (1)^{\circ}$

V = 2944.77 (13) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.13 \text{ mm}^{-1}$ T = 298 K $0.3 \times 0.15 \times 0.1 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer 3485 independent reflections Absorption correction: none 2603 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.043$ 3490 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$wR(F^2) = 0.136$	independent and constrained
S = 1.07	refinement
3485 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
202 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1

]	Н	vd	lro	gen-	bond	geomet	rv (Α.	°)	
		2 .				0				

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H1A \cdots O4$	0.86	1.89	2.7426 (19)	174
$N1B - H1B \cdot \cdot \cdot O2^{i}$	0.86	1.91	2.7701 (19)	174
$N8A - H8A1 \cdots O7B$	0.86	2.00	2.8582 (19)	178
$N8A - H8A2 \cdots O7A^{ii}$	0.86	2.04	2.8329 (19)	153
$N3B - H3B \cdot \cdot \cdot N3A$	0.86	1.98	2.8370 (19)	176
$N8B - H8B1 \cdots O7A$	0.86	1.99	2.8458 (19)	173
$N8B - H8B2 \cdots O7B^{iii}$	0.86	2.06	2.8491 (18)	153
O3−H3···O1	1.17 (2)	1.25 (2)	2.4167 (16)	173 (2)
$C6B - H6B \cdots O1^{i}$	0.93	2.50	3.186 (2)	131
$C5B - H5B \cdots O2^{iv}$	0.93	2.42	3.330 (2)	165
$C5A - H5A \cdots O4^{ii}$	0.93	2.37	3.296 (2)	175
	. 1 . 3	1 (**)		4 (1)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) x, y + 1, z; (iii) x, y - 1, z; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}.$

Data collection: KappaCCD Server Software (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

We wish to thank Dr M. Giorgi, Faculté des Sciences et Techniques de Saint Jérome, Marseille, France, for providing diffraction facilities and le Centre Universitaire de Khenchela for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2509).

References

- Bagieu-Beucher, M. (1990). Acta Cryst. C46, 238-240.
- Balasubramanian, T., Muthiah, P. T. & Robinson, W. T. (1996). Bull. Chem. Soc. Jpn, 69, 2919-2922.
- Barker, D. L. & Marsh, R. E. (1964). Acta Cryst. 17, 1581-1587.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
- Cherouana, A., Bouchouit, K., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, 0983-0985.
- Devlin, T. M. (1986). Textbook of Biochemistry, 2nd ed., pp. 489-494. New York: McGraw-Hill.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gdaniec, M., Brycki, B. & Szafran, M. (1989). J. Mol. Struct. pp. 57-64.
- Jaskólski, M. (1989). Acta Cryst. C45, 85-89.
- Jeffrey, G. A. & Kinoshita, Y. (1963). Acta Cryst. 16, 20-28.

- Johnson, T. B. & Coghill, R. D. (1925). J. Am. Chem. Soc. 47, 2838-2844. Madsen, D. & Larsen, S. (1998). Acta Cryst. C54, 1507-1511.
- Mahan, S. D., Ireton, G. C., Stoddard, B. L. & Black, M. E. (2004). Biochemistry, 43, 8957-8964.
- Mandel, N. S. (1977). Acta Cryst. B33, 1079-1082.
- Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Smith, G., Wermuth, U. D. & Healy, P. C. (2005). *Acta Cryst.* E**61**, 0746–0748. Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Swamy, K. C. K., Kumaraswamy, S. & Kommana, P. (2001). J. Am. Chem. Soc. 123, 12642-12649.

Acta Cryst. (2009). E65, o3058-o3059 [doi:10.1107/S1600536809046571]

Cytosinium-hydrogen maleate-cytosine (1/1/1)

N. Benali-Cherif, W. Falek and A. Direm

Comment

The pyrimidine base, Cytosine, leads to the nucleoside cytidine and its corresponding nucleotide: cytidine 5'-monophosphate. It may be found in very small quantities as a post-modified form, 5-methylcytosine, in certain nucleic acids (Devlin, 1986) such as in tuberculinic acid (Johnson & Coghill, 1925). More recently, 5-fluoro-cytosine (5-FC) has been used as a prodrug in suicide gene therapy of cancer with the crystal structure of bacterial cytosine deaminase (bCD) (Mahan *et al.*, 2004).

The crystal structures of cytosine (Barker & Marsh, 1964) and cytosine monohydrate (Jeffrey & Kinoshita, 1963) were determined many years ago. (Swamy *et al.*, 2001)]. Many inorganic cytosinium salts have been previously synthesized: chloride (Mandel, 1977), nitrate (Cherouana *et al.*, 2003) and dihydrogenphosphate (Jaskólski, 1989; Bagieu-Beucher, 1990). Cytosinium salts of organic acids are also common, the structures of a number of these including trichloroacetate (Gdaniec *et al.*, 1989), Cytosinium 3,5-dinitrosalicylate (Smith, *et al.*, 2005) and hydrogen maleate (Balasubramanian *et al.*, 1996) have been recently reported.

We report here the molecular structure of a novel compound (I) formed from the reaction of cytosine with maleic acid, namely cytosine cytosinium hydrogen maleate. It was prepared in order to extend our study on D—H…A hydrogen bonding in organic systems.

The asymmetric unit in (I) contains a hydrogen maleate anion, a cytosinium cation and a cytosine molecule which are held together by N—H…O and N—H…N hydrogen bonds (Fig. 1; Table 1). As observed in other hydrogen maleate anion, the H atom is roughly in between O1 and O3 (Madsen & Larsen, 1998).

In the crystal packing (Fig.2), cytosine bases and cytosinium cations are linked by N8A–H1N···O7A and N8B–H3N···O7B hydrogen-bonds forming a $C(6)R^2_2(8)$ graph-set motif and yielding infinite chains running parallel to the *b* axis. These chains are connected through N–H···O and C–H···O hydrogen bonds involving the O2 and O4 atoms of the maleate thus generating $R^2_3(10)$ and $R^2_2(7)$ graph-set motifs (Bernstein *et al.*, 1995) and giving rise to a planar two-dimensionnal network parallel to the (1 0 1) plane (Table 1, Fig. 2).

Experimental

The title compound was prepared by the reaction between cytosine and maleic acid. A colorless prismatic single-cristals were grown after few days of evaporation at room temperature.

Refinement

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$. H atom attached to O atom have been freely refined of water molecule were with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. *ORTEP* view of the asymmetric unit of (I) with the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

Fig. 2. Partial packing view showing the formation of the two dimensionnal network through N-H···O, N-H···N and C-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x+1/2, -y+3/2, z-1/2; (ii) x, y+1, z; (iii) x, y-1, z; (iv) x+1/2, -y+1/2, z-1/2]

cytosinium-hydrogen maleate-cytosine (1/1/1)

Crystal data

$C_4H_6N_3O^+ \cdot C_4H_3O_4^- \cdot C_4H_5N_3O$	$F_{000} = 1408$
$M_r = 338.29$	$D_{\rm x} = 1.526 {\rm Mg m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 27.3226 (5) Å	Cell parameters from 3490 reflections
b = 7.3618 (2) Å	$\theta = 2.8 - 28.0^{\circ}$
c = 14.6742 (4) Å	$\mu = 0.13 \text{ mm}^{-1}$
$\beta = 93.9050 \ (10)^{\circ}$	T = 298 K
$V = 2944.77 (13) \text{ Å}^3$	Prism, colourless
Z = 8	$0.3 \times 0.15 \times 0.1 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	2603 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.043$
Monochromator: graphite	$\theta_{\text{max}} = 28.0^{\circ}$
T = 298 K	$\theta_{\min} = 2.8^{\circ}$
$\omega - \theta$ scans	$h = 0 \rightarrow 35$
Absorption correction: none	$k = 0 \rightarrow 9$
3490 measured reflections	$l = -19 \rightarrow 19$
3485 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.136$	$w = 1/[\sigma^2(F_o^2) + (0.0596P)^2 + 1.9669P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
3485 reflections	$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
202 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods returning a construction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O7B	0.33929 (4)	1.06422 (15)	0.29275 (9)	0.0427 (3)
N1B	0.40074 (5)	0.90020 (18)	0.23748 (9)	0.0387 (3)
H1B	0.4147	0.9976	0.2199	0.046*
N3B	0.33603 (5)	0.75680 (17)	0.30317 (10)	0.0356 (3)
H3B	0.3085	0.7616	0.3281	0.043*
N8B	0.33306 (6)	0.44790 (19)	0.31458 (11)	0.0497 (4)
H8B1	0.3055	0.4591	0.3390	0.060*
H8B2	0.3452	0.3417	0.3067	0.060*
C2B	0.35779 (6)	0.9147 (2)	0.27857 (11)	0.0345 (3)
C4B	0.35667 (6)	0.5930 (2)	0.28930 (11)	0.0377 (4)
C5B	0.40201 (6)	0.5833 (2)	0.24822 (12)	0.0428 (4)
H5B	0.4171	0.4722	0.2390	0.051*
C6B	0.42225 (6)	0.7386 (2)	0.22325 (12)	0.0429 (4)
H6B	0.4518	0.7356	0.1954	0.052*
O7A	0.23768 (4)	0.47389 (15)	0.38025 (9)	0.0467 (3)
N1A	0.17582 (5)	0.63603 (19)	0.43517 (10)	0.0406 (3)
H1A	0.1605	0.5378	0.4474	0.049*

N3A	0.24320 (5)	0.78198 (17)	0.37790 (10)	0.0366 (3)
N8A	0.24807 (6)	1.09115 (19)	0.37624 (12)	0.0508 (4)
H8A1	0.2757	1.0810	0.3519	0.061*
H8A2	0.2365	1.1970	0.3873	0.061*
C2A	0.21960 (6)	0.6237 (2)	0.39693 (11)	0.0355 (3)
C4A	0.22347 (6)	0.9448 (2)	0.39665 (12)	0.0378 (4)
C5A	0.17782 (6)	0.9546 (2)	0.43695 (13)	0.0429 (4)
H5A	0.1640	1.0659	0.4506	0.051*
C6A	0.15542 (6)	0.7983 (2)	0.45467 (13)	0.0433 (4)
H6A	0.1254	0.8008	0.4808	0.052*
01	0.00023 (4)	0.51357 (17)	0.62970 (9)	0.0448 (3)
02	-0.05080 (5)	0.30095 (18)	0.67256 (10)	0.0541 (4)
O3	0.07419 (4)	0.53110 (16)	0.54870 (8)	0.0419 (3)
H3	0.0374 (7)	0.532 (3)	0.5856 (13)	0.063*
O4	0.12212 (5)	0.33885 (18)	0.48081 (9)	0.054
C1	0.08607 (6)	0.3706 (2)	0.52447 (11)	0.038
C2	0.05603 (7)	0.2114 (2)	0.54876 (14)	0.049
H1	0.0676	0.1001	0.5293	0.059*
C3	0.01551 (7)	0.2018 (2)	0.59356 (14)	0.0504 (5)
H2	0.0033	0.0850	0.6003	0.061*
C4	-0.01358 (6)	0.3478 (2)	0.63484 (12)	0.0402 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O7B	0.0443 (6)	0.0235 (6)	0.0615 (8)	0.0016 (4)	0.0113 (5)	-0.0015 (5)
N1B	0.0405 (7)	0.0322 (7)	0.0444 (8)	-0.0021 (5)	0.0104 (6)	-0.0013 (6)
N3B	0.0351 (7)	0.0245 (6)	0.0479 (8)	0.0008 (5)	0.0077 (6)	-0.0014 (5)
N8B	0.0544 (9)	0.0260 (7)	0.0704 (10)	0.0031 (6)	0.0172 (8)	0.0006 (7)
C2B	0.0369 (8)	0.0278 (8)	0.0385 (8)	0.0007 (6)	0.0013 (6)	-0.0017 (6)
C4B	0.0442 (9)	0.0267 (8)	0.0419 (9)	0.0022 (6)	0.0008 (7)	-0.0022 (6)
C5B	0.0440 (9)	0.0352 (9)	0.0500 (10)	0.0104 (7)	0.0084 (8)	-0.0028 (7)
C6B	0.0408 (9)	0.0430 (10)	0.0461 (9)	0.0061 (7)	0.0104 (7)	-0.0036 (7)
O7A	0.0452 (7)	0.0239 (6)	0.0724 (8)	0.0005 (5)	0.0135 (6)	-0.0010 (6)
N1A	0.0380 (7)	0.0313 (7)	0.0533 (8)	-0.0045 (6)	0.0099 (6)	-0.0021 (6)
N3A	0.0374 (7)	0.0215 (6)	0.0514 (8)	0.0010 (5)	0.0061 (6)	0.0001 (6)
N8A	0.0503 (8)	0.0243 (7)	0.0793 (11)	0.0016 (6)	0.0165 (8)	-0.0002 (7)
C2A	0.0361 (8)	0.0259 (8)	0.0446 (9)	0.0003 (6)	0.0029 (7)	-0.0001 (6)
C4A	0.0392 (8)	0.0277 (8)	0.0465 (9)	0.0027 (6)	0.0016 (7)	-0.0014 (7)
C5A	0.0415 (9)	0.0325 (8)	0.0550 (10)	0.0077 (7)	0.0059 (7)	-0.0060(7)
C6A	0.0362 (8)	0.0433 (10)	0.0510 (10)	0.0031 (7)	0.0082 (7)	-0.0062 (8)
01	0.0403 (6)	0.0392 (7)	0.0566 (7)	-0.0014 (5)	0.0154 (5)	-0.0037 (6)
O2	0.0455 (7)	0.0501 (8)	0.0694 (9)	-0.0055 (6)	0.0239 (6)	0.0023 (7)
O3	0.0418 (6)	0.0349 (6)	0.0506 (7)	-0.0033 (5)	0.0137 (5)	-0.0028 (5)
O4	0.052	0.046	0.067	0.000	0.030	-0.006
C1	0.037	0.038	0.040	-0.001	0.007	0.000
C2	0.053	0.031	0.067	0.002	0.020	-0.002
C3	0.0526 (10)	0.0309 (9)	0.0696 (12)	-0.0038 (7)	0.0179 (9)	0.0020 (8)

C4	0.0367 (8)	0.0401 (9)	0.0443 (9)	-0.0023 (7)	0.0067 (7)	0.0016 (7)
Geometric param	neters (Å, °)					
O7B—C2B		1.2348 (19)	N3	A—C2A		1.3697 (19)
N1B—C6B		1.350 (2)	N8	A—C4A		1.315 (2)
N1B—C2B		1.360 (2)	N8.	A—H8A1		0.8600
N1B—H1B		0.8600	N8	A—H8A2		0.8600
N3B—C4B		1.353 (2)	C4.	A—C5A		1.418 (2)
N3B—C2B		1.365 (2)	C5.	A—C6A		1.337 (2)
N3B—H3B		0.8600	C5.	A—H5A		0.9300
N8B—C4B		1.314 (2)	C6.	A—H6A		0.9300
N8B—H8B1		0.8600	01-	—C4		1.281 (2)
N8B—H8B2		0.8600	01-	—Н3		1.25 (2)
C4B—C5B		1.416 (2)	02-	—C4		1.239 (2)
C5B—C6B		1.332 (2)	03-	—C1		1.282 (2)
C5B—H5B		0.9300	03-	—Н3		1.17 (2)
C6B—H6B		0.9300	04	—C1		1.2333 (19)
O7A—C2A		1.2398 (19)	C1-	—C2		1.488 (2)
N1A—C6A		1.357 (2)	C2-	—C3		1.327 (3)
N1A—C2A		1.358 (2)	C2-	—H1		0.9300
N1A—H1A		0.8600	C3-	C4		1.490 (3)
N3A—C4A		1.3503 (19)	C3-	—H2		0.9300
C6B—N1B—C2E	3	122.40 (14)	H8	A1—N8A—H8A2		120.0
C6B—N1B—H1B	3	118.8	07.	A—C2A—N1A		121.00 (14)
C2B—N1B—H1B	3	118.8	07.	A—C2A—N3A		121.13 (14)
C4B—N3B—C2E	3	121.71 (13)	N1.	A—C2A—N3A		117.87 (13)
C4B—N3B—H3B	3	119.1	N8	A—C4A—N3A		117.61 (15)
C2B—N3B—H3B	3	119.1	N8	A—C4A—C5A		122.06 (15)
C4B—N8B—H8B	31	120.0	N3	A—C4A—C5A		120.33 (15)
C4B—N8B—H8B	32	120.0	C6.	A—C5A—C4A		117.66 (15)
H8B1—N8B—H8	3B2	120.0	C6.	А—С5А—Н5А		121.2
O7B—C2B—N1B	3	121.34 (14)	C4.	А—С5А—Н5А		121.2
O7B—C2B—N3B	3	121.59 (14)	C5.	A—C6A—N1A		121.10 (15)
N1B—C2B—N3B	3	117.07 (13)	C5.	А—С6А—Н6А		119.4
N8B—C4B—N3B	3	117.68 (15)	N1.	А—С6А—Н6А		119.4
N8B—C4B—C5E	3	122.64 (15)	C4-	—О1—Н3		112.6 (11)
N3B—C4B—C5E	3	119.67 (15)	C1-	—О3—Н3		111.8 (12)
C6B—C5B—C4E	3	117.72 (15)	04	C1O3		123.04 (15)
C6B—C5B—H5B	3	121.1	04	C1C2		116.62 (16)
C4B—C5B—H5B	3	121.1	03-	C1C2		120.34 (14)
C5B—C6B—N1E	3	121.38 (15)	C3-			130.78 (17)
С5В—С6В—Н6В	3	119.3	C3-	—С2—Н1		114.6
N1B—C6B—H6B	3	119.3	C1-	—С2—Н1		114.6
C6A—N1A—C2A	A	122.13 (14)	C2-	C3C4		130.43 (16)
C6A—N1A—H1A	A	118.9	C2-	—С3—Н2		114.8
C2A—N1A—H1A	A	118.9	C4-			114.8
C4A—N3A—C2A	4	120.90 (13)	02-	C4O1		123.04 (16)
C4A—N8A—H8A	A1	120.0	02	C4C3		117.21 (16)

C4A—N8A—H8A2	120.0	O1—C4—C3	11	9.74 (14)				
Hydrogen-bond geometry (Å, °)								
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A				
N1A—H1A····O4	0.86	1.89	2.7426 (19)	174				
N1B—H1B····O2 ⁱ	0.86	1.91	2.7701 (19)	174				
N8A—H8A1····O7B	0.86	2.00	2.8582 (19)	178				
N8A—H8A2···O7A ⁱⁱ	0.86	2.04	2.8329 (19)	153				
N3B—H3B···N3A	0.86	1.98	2.8370 (19)	176				
N8B—H8B1····O7A	0.86	1.99	2.8458 (19)	173				
N8B—H8B2····O7B ⁱⁱⁱ	0.86	2.06	2.8491 (18)	153				
O3—H3…O1	1.17 (2)	1.25 (2)	2.4167 (16)	173 (2)				
C6B—H6B···O1 ⁱ	0.93	2.50	3.186 (2)	131				
C5B—H5B····O2 ^{iv}	0.93	2.42	3.330 (2)	165				
C5A—H5A···O4 ⁱⁱ	0.93	2.37	3.296 (2)	175				

Symmetry codes: (i) x+1/2, -y+3/2, z-1/2; (ii) x, y+1, z; (iii) x, y-1, z; (iv) x+1/2, -y+1/2, z-1/2.

Fig. 1

